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Walking cavity solitons

Dmitry V. Skryabin1 and Alan R. Champneys2

1Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
2Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom

~Received 17 November 2000; revised manuscript received 20 February 2001; published 24 May 2001!

A family of walking solitons is obtained for the degenerate optical parametric oscillator below threshold.
The loss-driven mechanism of velocity selection for these structures is described analytically and numerically.
Our approach is based on understanding the role played by the field momentum and generic symmetry
properties and, therefore, it can be easily generalized to other dissipative multicomponent models with walk
off.
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For multicomponent optical fields, the complexity of th
problem of soliton formation is often enhanced by the diff
ence between group velocities of the interacting compon
or double refraction properties of the nonlinear mediu
which introduce, respectively, temporal and spatial walk o
Therefore, for existence of multicomponent mutually trapp
solitons, intrinsic walk-off compensating mechanisms sho
be present in the problem along with more conventional
fraction or group velocity dispersion compensations. In
context of free propagation, walking solitons have recen
been predicted theoretically@1–4# and observed experimen
tally @5,6# in degenerate and nondegenerate three-wave m
ing in x (2) media @1–3,5,6# and in degenerate four-wav
mixing in x (3) media @4#. Both of these systems are d
scribed by Hamiltonian conservative models.

Non-Hamiltonian systems with gain and loss also ha
paramount importance in nonlinear optics and the study
dissipative localized structures is a subject of much curr
research. A particularly important class of dissipative loc
ized structures with potential for practical application a
cavity solitons existing in optical cavities filled with passiv
nonlinear media and supported by external driving@7,8#. One
of the possible advantages of using quadratic cavity solit
for information processing is thatx (2) nonlinearity has a
practically instantaneous response, while relatively la
nonlinear coefficients can be achieved using modern ph
matching techniques. These two properties are normally
ficult to achieve simultaneously in materials with Kerr-lik
nonlinearities, see@9#.

To the best of our knowledge, walk-off effects on brig
cavity solitons have not been addressed until now. Here
shall discuss them at a fundamental level using the opt
parametric oscillator~OPO! as an example. Our main resu
is to demonstrate analytically and numerically how the co
mon velocity of the mutually trapped two-component wa
envelope is selected. In achieving this we will develop
method based on the evolution equations for the field m
mentum. This method gives a clear physical interpretation
the velocity selection mechanism and provides good qua
tative estimates for the velocity itself. The timeliness of a
dressing this problem for cavity solitons stems in part fro
the ever-improving experimental results on observation
spatial and temporal localization effects and instabilities
x (2) cavities@15–17#.
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Assuming phase matching, the equations describin
synchronously pumped-pulsed ring OPO can be written
the following dimensionless form@11,12#:

2 i ~] t1g1!E15~a1]z
21 iv1]z1d1!E11~E21m!E1* ,

2 i ~] t1g2!E25~a2]z
21 iv2]z1d2!E21E1

2 . ~1!

HereEj , j 51,2 are the scaled, slowly varying envelopes
the intracavity fields at fundamental~signal! and second har-
monic ~pump! frequencies; explicit formulas connectin
them to physical fields can be found in@11–13#. Dimension-
less coordinatesz and t can be interpreted, respectively, a
the position measured in the frame moving with an aver
group velocity and time measured in the units of the cav
round trip. It is important to note that in deriving Eq.~1!, the
external pump field characterized by the parameterm has
been subtracted from the intracavity pump field, transfor
ing to zero the cw solution corresponding to subthresh
behavior, see@12,14# for details. The coefficientsd j andg j
>0 represent detunings from the cavity resonances and
ear losses, respectively. The group velocity dispersion
rametersa j are taken to be 1/j in our numerical calculations
The walk-off parameters arev1,2. We assume below, with
out loss of generality, thatv250.

We seek cavity solitons in the formEj5Aj (t), wheret
[z2Vt, and velocityV is the unknown parameter chara
terizing common shift of the group velocities. The envelo
profiles Aj obey the following set of ordinary differentia
equations:

2 ig1A15~a1]t
21 i ~v12V!]t1d1!A11~A21m!A1* ,

2 ig2A25~a2]t
22 iV]t1d2!A21A1

2 . ~2!

For v150, quiescent (V50) bright soliton solutions of
Eqs.~1! and~2! existing in the region of bistability betwee
the trivial (Ej50) and nontrivial homogeneous (Ej
5constj ) solutions were studied in Refs.@10–12#. The trivial
and two nontrivial solutions coexist ifmL,m,mR providing
that d1d2.g1g2, where mR5Ad1

21g1
2 and mL5ug1d2

1g2d1u/Ad2
21g2

2. The eigenvalue that determines the stab
ity of the trivial solution of Eqs.~1! with respect to pertur-
bations;elt1 ikz is l52g11 ikv11Am22(d12k2)2. Be-
©2001 The American Physical Society10-1
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low we focus on the case whend1,0 and the trivial solution
loses its stability exactly atm5mR . Furthermore, certain
localization effects in models that go beyond the mean fi
approximation and include walk off were described
@18,19#. One can envisage that forv1Þ0 practically any so-
lution existing forv150 should start to drift. It remains un
clear, however, whether such moving structures can be fo
as solutions of the simple autonomous model~2! or whether
they might belong to more complicated classes of non-ste
moving solutions to Eqs.~1!. Our primary objective here is
to show how a family of the cavity solitons existing in th
bistability region can be continued as steadily moving str
tures into the region of nonzero walk off.

A useful property of Eqs.~1! is that solitary solutions can
be found in the limit when cavity lossesg j are small, which
physically corresponds to the limit of large cavity detunin
@12#. Therefore, for the question of existence, the bala
between nonlinear focusing and diffraction appears to
more crucial than the energy balance between external d
ing and loss. This relative importance, together with the
solute necessity of the latter balance, allows us to develo
physical reasoning for the selection ofV based on the quasi
conservation of transverse momentum.

Specifically, straightforward manipulation of Eqs.~1!
shows that the total field momentumM5M11M2 obeys

] tM522g1M122g2M2 , ~3!

whereM j52 i *dz(Ej* ]zEj2c.c.) are momenta of the indi
vidual components. If the right-hand side of Eq.~3! is small,
thenM is a quasiconserved quantity, and one can assume
V is a slowly varyingorder parameter,] tV!1. To first ap-
proximation, Eq.~3! then becomes

] tV]VM522g1M1~V!22g2M2~V!, ~4!

whereM1,2 represent the individual momenta calculated
g1,250. For zero losses we have been able to numeric
continue quiescent solutions@12# into the region of nonzero
v1 andV, by continuously increasing the latter~more reason-
ing on why it is possible will be given below!. ThusM j on
the right-hand side of Eqs.~4! can be considered as contin
ous functions of the parameterV, as is the case in othe
similar Hamiltonian models@1–4#. Hence, for cavity solitons
traveling with constant velocity one finds that

M1~V!

M2~V!
52

g2

g1
. ~5!

Therefore, if this equality holds, walking cavity solitons ex
and travel with velocity selected by the ratio of losses of
fundamental and second harmonic fields. Plots in Fig. 1~a!
show howM1,2 depends onV, and hence the range ofV for
the possible existence of cavity solitons according to the
mula ~5!. Note that a particular value ofV can be selected
only from the finite interval Vb2<V<Vb1, where
Mm(Vbm)50, and it is strictly fixed by the ratio of losse
The dotted curves in Fig. 1~b! show the predicted depen
dence ofV on g2 /g1, obtained using Eq.~5!. Remarkably, in
spite of the fact that the two-component cavity soliton mov
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as a whole with selected velocity, its components carry m
menta with opposite signs. Thus the walk-off compensat
mechanism can be considered as analogous to the form
of excitons in semiconductors.

In order to independently verify the above consideratio
and to extend them to largeg ’s we have used numerica
path-following techniques to compute localized solutions
Eqs. ~2! with V assumed unknown. We have found go
agreement between the numerical and semianalytical re
over a wide range of possible values of parameters, e.g.,
Fig. 1~b!. Figure 2 shows typical transverse profiles of t
components and the interval of existence of single-hum
solitons as the pump parameterm is varied@Fig. 3~b! shows
the corresponding variation ofV#. Note that broad features o
the profiles and parameter regions of existence are relati
insensitive to the value ofv1. We have stopped computin
solutions at a point where the branch of single-humped s
tary waves undergoes a limit point~fold! at the large-m end
of their interval of existence~finite uAj u2). Computations can
be continued beyond this point but the soliton profiles b
come multihumped, just as they do in the quiescent c
@12#. Our numerical results reveal that the soliton profiles
asymmetric and that the degree of asymmetry is accentu
as one approaches the right-hand limit point ofm-interval of
their existence, see Fig. 2~b! which is at just such a limit
point.

FIG. 1. ~a! M1,2 vs V for g1,250 andv150.3. ~b! V vs g2 /g1.
Other parameters ared1,2522, m50.25. Full lines corresponds to
the numerical solution of Eqs.~2! and dotted lines are obtaine
from Eq. ~5!. All quantities in this and subsequent figures are
mensionless.

FIG. 2. ~a! *dtuA1,2u2 against pump parameterm for v150.1
andv151.0 ~almost overlaid! solid curves represent the stable po
tions of the branch.~b! Soliton profile forv150.5, m51.821 581,
which is just the right-most point of the existence region. Oth
parameters ared1521.8, d2524, g1,250.5.
0-2
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To gain insight into thedynamicsof the solitons in the
presence of walk off, let us consider the effect that sm

FIG. 3. ~a! V againstv1 for: ~1! g1,250.5, d1521.8, d25
24, m51.0; ~2! g1,250.02,d1,2522, m50.25.~b! V/v1 vs m for
g1,250.5, d1521.8, d2524.
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dissipation has on the spectral properties of walking solito
For this purpose it is useful to deduce from Eq.~4! the equa-
tion for the soliton positionz05* tV(t8)dt8. Expanding the
right-hand side of Eq.~4! in Taylor series aboutV5Vs ,
whereVs is found from Eq.~5!, one obtains

M 8] t
2z052~g1M181g2M28!~Vs2] tz0!, ~6!

where 8 stands for derivative with respect toV at V5Vs .
The same equation can also be derived by direct asymp
expansion, see below. Analyzing the stability of the solut
z05Vst we find that it has eigenvalueslg522(g1M18
1g2M28)/M 8 andlz50. The latter corresponds to the zer
eigenvalue~translational! mode of the eigenvalue problem
L̂jW5ljW , where
L̂[F 2g12~v12V!]t2ImA2 ImA1 2a1]t
22d1 2ReA1

22ImA1 2g21V]t 22ReA1 2a2]t
22d2

a1]t
21d11ReA21m ReA1 2g12~v12V!]t1ImA2 ImA1

2ReA1 a2]t
21d2 22ImA1 2g21V]t

G ~7!
ive
s
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andjW5(u1 ,u2 ,w1 ,w2)T. This mode is given by the gradien
of the cavity solitonjW05]t(ReA1 ,ReA2 ,ImA1 ,ImA2)T and
Eq. ~7! has been derived by substituting the ansatz

Ej5Aj~t!1e@uj~t,t !1 iw j~t,t !# ~8!

into Eqs.~1! and assuminge!1, uj ,wj;elt.
For zero losses, our system becomes Hamiltonian and

soliton’s position obeys Newton’s equation for a free p
ticle, ] t

2z050. This explicitly shows that the translation

modejW0 is now doubly degenerate and that velocity of t
soliton is an arbitrary parameter determined by initial con
tions. Note that the losses introduce not only damping@the
term proportional to] tz0 in Eq. ~6!# into the soliton dynam-
ics as one might expect, makinglg,0, but also externa
forcing ~the term proportional toVs). Numerical analysis of
the spectrum ofL̂ has shown that the region of stability o
the walking solitons is approximately inherited from the q
escent case@12#. This region of stability is as indicated b
the solid lines in Fig. 2~b!, where for these moderately larg
g values the Hopf bifurcation, present in the Hamiltoni
limit g1,2→0 at m values to the left of the right-hand limi
point, has been suppressed.

To explicitly calculate the dependence ofV on v1, we
take the new limit of smallv15e and seek solution of Eqs
~1! in the form~8!, wheret5z2z0(t) and] tz0;e. We find
that to the first order:e(L̂02] t)jW5] tz0jW02v1PW , whereL̂0

5L̂(v15V50) and PW 5]z(ReE1 ,ImE1,0,0)T. V is found
from the
he
-

-

^jW0 ,jW0
†&V5v1^PW ,jW0

†&, ~9!

which explicitly shows proportionality ofV to v1. HerejW0
† is

the translational mode of the adjoint operator,L̂†jW0
†50, and

^•,•& defines scalar product. It is clear now that the effect
external force in Eq.~6! is proportional not only to losse
but, unlike the effective friction, tov1 also. Fig. 3~a! shows
numerically calculated dependence ofV vs v1, indistinguish-
able on the scale depicted from the results obtained from
~9!, namely,V/v150.645 and 0.475 for the parameter cas
~1! and ~2!, respectively. Surprisingly, even forv1;1 the
linear dependence predicted by Eq.~9! is preserved to within
a few percent. Dependence ofV/v1 on the pump paramete
in Fig. 3~b! shows thatV varies only slightly withm over the
stable part of the branch, with the variation being the grea
near the ends of them interval. Furthermore, numerical ca
culations over a range of other parameter values have i
cated thatVs never exceedsv1. Equation~9! starts to give
poor results when̂jW0 ,jW0

†& becomes the order ofe, which
happens in the Hamiltonian limitg1,2;e. In this case one
needs to assumev1;e2 and proceed with an asymptotic ex
pansion up to second order. In fact, this second-order t
gives nothing other than Eq.~6!, and signals that Eqs.~3! and
~6! should be considered as having second order of small
in e. Note that finding explicit expressions for the effectiv
massM 8 and friction lg is more cumbersome using th
asymptotic approach, compared to our previous moment
based method. Nevertheless, the two methods give the s
final answer.
0-3
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The question of velocity selection can also be approac
from a more intuitive, symmetry-based point of view. Up
taking small perturbations of the trivial zero solution of Eq
~2! proportional toevt, one can show that the eigenvalu
v are roots of the characteristic polynomialx(v)
5@(a1v2 1d1)2 1 ((v12V)v 1 g1)22m2#@(a2v2 1 d2)2

1(g22Vv)2#. Inside the region of the soliton existencex
has four roots whose real parts are positive and four ro
with negative real parts. Generically therefore, in order
the four-dimensional stable and unstable manifolds to in
sect along a homoclinic orbit@corresponding to a solitary
wave solution to Eqs.~1!# one needs to tune one of the p
rameters, e.g., velocityV, to a particular value, while holding
the other parameters fixed. Thus walking cavity solitons
a codimension-onephenomenon in the parameter space
Eqs.~2!.

There are, however, two special limits in which the so
tons acquire special symmetries and, as a consequenc
this, a lower codimension. The first is ifg1,250. Then Eqs.
~2! become invariant with respect to reversibility transform
tion

R1 :~t,ReA1 ,Im A1 ,ReA2 ,Im A2!

→~2t,2ReA1 ,Im A1 ,ReA2 ,2Im A2!, ~10!

and we find that a family ofR1-symmetricsolitons exist for a
continuousV-interval, i.e., havecodimension zero. This is
because, intersection of the stable and unstable manif
now automatically takes place if trajectories leaving ze
along the four-dimensional unstable manifold intersect
four-dimensional symmetry hyperplane fix(R1) at a point. A
second limit is the case of quiescent solitonsv15V50,
when Eqs.~2! are invariant under a different reversibility
R2 :(t,A1 ,A2)→(2t,A1 ,A2). Then R2-symmetric
codimension-zero solitons exist throughout a finite range
parameters@12#. Thus both of the asymptotic methods a
plied above are valid in the limits when either of the sy
metriesR1 or R2 are weakly broken. Therefore, it would b
correct to interpret velocity selection as being due to
breaking of reversibility. For a review of properties of th
homoclinic orbits in reversible systems see, e.g.,@20#.

Finally we verify the velocity selection mechanism a
the stability of the walking solitons by presenting the resu
of numerical simulation of Eqs.~1!. First we consider exci-
tation of a solitary structure in the presence of the walk-
and with zero losses. If localized initial conditions are ev
functions ofz, i.e., the initial momentum is zero, then, pr
viding that walk-off is nonzero, emission of linear wav
during the relaxation to the solitary wave has an asymme
character and therefore the emerging soliton acquires n
zero velocity, see Fig. 4~a!. Walk-off-induced momentum
transfer from linear waves to solitons can be compensate
imposing asymmetric transverse variations of the phase
the initial conditions. Thus, the soliton velocity is a tunab
parameter and can be reduced, e.g., to zero, see Fig. 4~b!. In
contrast, when we take into account losses, then, the sim
tions clearly show that the soliton’s velocity becomes ind
pendent of the value of the momentum stored in the ini
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conditions, see Fig. 5. This is in full agreement with t
above analytical considerations.

Let us also remark briefly on previous studies involvi
velocity selection. In reaction-diffusion systems arising
biology and chemistry, the notion of the selection of t
speed of a front or pulse is widespread; in, e.g.,
FitzHugh-Nagumo equations for nerve impulses@21#, or the
nonlinear Schro¨dinger equation with third-order dispersio
and dissipative corrections@22#. Note, that in the latter work
an approach based on energy and momentum balance si
to the one described above was used to find the sele
value of the soliton velocity. In the context of quadratic no
linearity, dissipative shock waves, and solitons in the pr
ence of walk-off have recently been modeled using so-ca
quadratic Ginzburg-Landau~GL! equations@23,24#. Walking
domain walls in optical parametric oscillators above thre
old have been reported in@25# using a reduction of Eqs.~1!
to a real GL equation. Also, questions of pattern formation
the presence of walk off have attracted much attention
cently, see, e.g.,@13,26#.

FIG. 4. Trajectories of walking cavity solitons after excitatio
by localized initial conditions:E1,25a1,2exp(2z2/w21ia1,2z). ~a!
a1,250, ~b! a1,2520.2. Other parametersv150.2, g1,250, m
50.5, d1,2522, a1510, anda251.

FIG. 5. The same as Fig. 4, butg1,250.05.
0-4
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In summary, we have established the existence of t
component cavity solitons in the degenerate OPO with wa
off and have revealed the phenomenon of velocity select
Moreover, we have provided asymptotic methods for p
dicting the selected velocity of dissipative solitons, for whi
we get excellent numerical agreement. These methods, v
in the limits of small losses or walk-off, can be generaliz
to other multicomponent optical systems. Moreover, we h
shown how the asymptotic results can be interpreted in te
06661
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of the breaking of reversibility by the inclusion of walk o
and losses. We finally remark that we have also obtai
results similar to the above for nondegenerate OPOs, wh
not only velocity, but also frequency shift is selected@27#,
and for the case of two-dimensional spatial solitons.

We thank W.J. Firth for useful discussions. DVS a
knowledges support from the Royal Society of Edinbur
and the EPSRC Grant No. GR/N19830.
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