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Walking cavity solitons
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A family of walking solitons is obtained for the degenerate optical parametric oscillator below threshold.
The loss-driven mechanism of velocity selection for these structures is described analytically and numerically.
Our approach is based on understanding the role played by the field momentum and generic symmetry
properties and, therefore, it can be easily generalized to other dissipative multicomponent models with walk
off.
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For multicomponent optical fields, the complexity of the  Assuming phase matching, the equations describing a
problem of soliton formation is often enhanced by the differ-synchronously pumped-pulsed ring OPO can be written in
ence between group velocities of the interacting componentée following dimensionless forifil1,12:
or double refraction properties of the nonlinear medium,

. _ 2 .
which introduce, respectively, temporal and spatial walk off. i (9 ¥1)E1=(a1d;+iv1d,+ 81)Er+ (Ex+ w)ET
Therefore, for existence of multicomponent mutually trapped ) 5 )
solitons, intrinsic walk-off compensating mechanisms should —i1(dtt y2)Ea=(apd; +ivad, + 6)Ex+ET. (D)

be present in the problem along with more conventional dif- ) .

fraction or group velocity dispersion compensations. In thé 1€r€E;, j=1,2 are the scaled, slowly varying envelopes of

context of free propagation, walking solitons have recentlyih€ intracavity fields at fundamenteigna) and second har-

been predicted theoretical[il—4] and observed experimen- Monic (pump frequencies; explicit formulas connecting

tally [5,6] in degenerate and nondegenerate three-wave mixnem to physical fields can be found[ib1 -13. Dimension-

ing in x( media[1-3,5,§ and in degenerate four-wave less coc_)rdlnatez andt can be mterpreteq, regpectlvely, as

mixing in ¥ media[4]. Both of these systems are de- the posmon_measur_ed in the frame_ moving Wlth an average

scribed by Hamiltonian conservative models. group vglocn_y gnd time measured in the units of the cavity
Non-Hamiltonian systems with gain and loss also havd©Und trip. Itis important to note that in deriving Eq), the

paramount importance in nonlinear optics and the study ofXternal pump field characterized by the parameiehas
dissipative localized structures is a subject of much currenp€€n subtracted from the intracavity pump field, transform-
research. A particularly important class of dissipative locallNd t© zero the cw solution corresponding to subthreshold
ized structures with potential for practical application areP€havior, se¢12,14 for details. The coefficients; and y;
cavity solitons existing in optical cavities filled with passive =0 represent detumngs from the cavity resonances gnd lin-
nonlinear media and supported by external driiigg]. One ~ €&' losses, respectively. The group velqcny dlsperglon pa-
of the possible advantages of using quadratic cavity solitoni2Metersy; are taken to be }/in our numerical calculations.
for information processing is that® nonlinearity has a '€ walk-off parameters arg, ,. We assume below, with-
practically instantaneous response, while relatively largéut loss of generality, that,=0.
nonlinear coefficients can be achieved using modern phase We seek cavity solitons in the forils; =A(r), wherer
matching techniques. These two properties are normally dif=2— Vt, and velocityV is the unknown parameter charac-
ficult to achieve simultaneously in materials with Kerr-like t€rizing common shift of the group velocities. The envelope
nonlinearities, seg9]. proflle_s A; obey the following set of ordinary differential
To the best of our knowledge, walk-off effects on bright €quations:
cavity solitons have not been addressed until now. Here we
shall discuss them at a fundamental level using the optical
parametric oscillatofOPO as an example. Our main result ) s . )
is to demonstrate analytically and numerically how the com- iy A= (apd;—iVa + 5) Ay T AL @)
mon velocity of the mutually trapped two-component wave . ) ) ,
envelope isyselected. In aghievri)r?g this we WFi)II develop a_ Forva=0, quiescent Y=0) bright soliton solutions of
method based on the evolution equations for the field moEdS-(1) and(2) existing in the region of bistability between
mentum. This method gives a clear physical interpretation of’®¢ ivial (E;j=0) and nontrivial homogeneousE(
the velocity selection mechanism and provides good quanti= €ONSf) solutions were studied in Refs.0-12. The trivial
tative estimates for the velocity itself. The timeliness of ad-&nd two nontrivial solutions coexist if, < u< g providing
dressing this problem for cavity solitons stems in part fromthat 816,> y1y,, where pg=d1+vy1 and u =|y:18,
the ever-improving experimental results on observation oft y251|/\/522+ 722_ The eigenvalue that determines the stabil-
spatial and temporal localization effects and instabilities inity of the trivial solution of Egs(1) with respect to pertur-

x?) cavities[15-17. bations ~eM*t1kZ is A = — y, +ikv+ VuZ— (6,— k?)?. Be-

—iyAL= (10241 (01— V), + 81) A+ (Ax+ n)AT
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low we focus on the case wheil <0 and the trivial solution 03 =
loses its stability exactly aj=pugr. Furthermore, certain 2 ({,l,)/‘ v =0.5 ®
R y vy =0.

localization effects in models that go beyond the mean field M, —
approximation and include walk off were described in M, | 02
[18,19. One can envisage that for #0 practically any so- 0
lution existing forv ;=0 should start to drift. It remains un-
clear, however, whether such moving structures can be found -1 /
as solutions of the simple autonomous mo@lor whether 7 Vi L N B
they might belong to more complicated classes of non-steady 2 0
moving solutions to Eq9.1). Our primary objective here is 0.1 0 01 02 03 0 05 1 15 2
to show how a family of the cavity solitons existing in the LY
bistability region can be continued as steadily moving struc- FIG. 1. () My, VsV for ;=0 ando;=0.3.(b) V Vs ,/71.

turis mt? tlhe regl?n OffEnonie!’o t\;]vatlk Olf.ft' luti Other parameters a® ,= —2, u=0.25. Full lines corresponds to
useful property of Eqs(1) is that solitary solutions can the numerical solution of Eq42) and dotted lines are obtained

be found in the limit when cavity losseg are small, which o0 Eq (5). All quantities in this and subsequent figures are di-
physically corresponds to the limit of large cavity detunings,ensionless.

[12]. Therefore, for the question of existence, the balance

between nonlinear focusing and diffraction appears to bes a whole with selected velocity, its components carry mo-
more crucial than the energy balance between external drivhenta with opposite signs. Thus the walk-off compensating
ing and loss. This relative importance, together with the abmechanism can be considered as analogous to the formation
solute necessity of the latter balance, allows us to develop af excitons in semiconductors.

physical reasoning for the selection\ébased on the quasi- In order to independently verify the above considerations
conservation of transverse momentum. and to extend them to large’s we have used numerical
Specifically, straightforward manipulation of Eqél)  path-following techniques to compute localized solutions to
shows that the total field momentuki=M,+ M, obeys Egs. (2) with V assumed unknown. We have found good
agreement between the numerical and semianalytical results
M =—=2y;M1-27,M5, (3)  over a wide range of possible values of parameters, e.g., see
. ... Fig. 1(b). Figure 2 shows typical transverse profiles of the
whereM ;= —|fdz(Ej* d,E;—c.c.) are momenta of the indi-

! i _ s components and the interval of existence of single-humped
vidual (_:ompone_nts. If the rlght-hand side of E8) is small, solitons as the pump parameferis varied[Fig. 3(b) shows
thenM is a quasiconserved quantity, and one can assume thgle corresponding variation ®f]. Note that broad features of
V'is a slowly varyingorder parameterg;V<1. To first ap-  the profiles and parameter regions of existence are relatively
proximation, Eq.(3) then becomes insensitive to the value af,;. We have stopped computing
4) solutions at a point where the branch of single-humped soli-
tary waves undergoes a limit poiffbld) at the largesx end
whereM , represent the individual momenta calculated forOf their interval of existencéfinite |A;|?). Computations can
y1,=0. For zero losses we have been able to numericallP€ continued beyond this point but the soliton profiles be-
continue quiescent solutioi2] into the region of nonzero c0Me multihumped, just as they do in the quiescent case
v, andV, by continuously increasing the latténore reason-  [12]- Our numerical results reveal that the soliton profiles are
ing on why it is possible will be given belowThusM; on asymmetric and that the degree of asymmetry is accentuated
the right-hand side of Eq$4) can be considered as continu- & One approaches the right-hand limit poinpeinterval of
ous functions of the paramet®f, as is the case in other thglr existence, see Fig.l® which is at just such a limit
similar Hamiltonian model1—4]. Hence, for cavity solitons POINt.
traveling with constant velocity one finds that 40

M1(V) _ 2
Mo (V) "

Therefore, if this equality holds, walking cavity solitons exist
and travel with velocity selected by the ratio of losses of the
fundamental and second harmonic fields. Plots in Fig) 1
show howM , depends o1V, and hence the range dffor

the possible existence of cavity solitons according to the for- 0 RS
mula (5). Note that a particular value &f can be selected ' ST T

only from the finite interval Vp,<V<Vy;, where FIG. 2. () fdr|A;J? against pump parametgr for v;=0.1
Mn(Vem) =0, and it is strictly fixed by the ratio of losses. andy,=1.0(almost overlaiti solid curves represent the stable por-
The dotted curves in Fig.(t) show the predicted depen- tions of the branch(b) Soliton profile forv;=0.5, 1 =1.821581,
dence ofV on vy, /vy, obtained using Eq5). Remarkably, in  which is just the right-most point of the existence region. Other
spite of the fact that the two-component cavity soliton movesparameters aré;=—1.8, 5,= —4, v, ,=0.5.

INVIM=—2y,M (V) = 2y,M5(V),

fh (b)

©)

A b L o o
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A 0.68 dissipation has on the spectral properties of walking solitons.
og; @) PR For this purpose it is useful to deduce from E4).the equa-
05 e 067 tion for the soliton positiorzg=['V(t')dt’. Expanding the
04 (1)~ 0.66 right-hand side of Eq(4) in Taylor series abouV=Vjg,
0 ) o whereV is found from Eq.(5), one obtains
02 g
0.64 ;2o ’ ’ _
ot M’ 97zo=2(y1M1+ ¥2M3)(Vs—diZo), (6)
ol? 063 i
002 04 0§ 08, T 08 1 12 14 16,18
where ' stands for derivative with respect ¥ at V= V.
FIG. 3. (8) V againstv; for: (1) y;,=0.5, §;=—1.8, 6,= The same equation can also be derived by direct asymptotic
=4, u=1.0;(2) y,,=0.02, 6, ,= —2, ©=0.25.(h) V/vy vs u for expansion, see below. Analyzing the stability of the solution
¥12=0.5, 6;=—-1.8, 5,=—4. zo=Vs we find that it has eigenvalues,=—2(y;M;

+7y,M25)/M’" and\,=0. The latter corresponds to the zero-

To gain insight into thedynamicsof the solitons in the (?igenv?lue(translational mode of the eigenvalue problem
presence of walk off, let us consider the effect that smallCé=\¢&, where

—y1i—(v1—V)d,—ImA,  ImA,; — 0= 6, —ReA;
. —2ImA, — >+ V4, —2ReA, —ay?— 6,
E2] a1 60+ ReApt RA;,  —y—(0-V)a,+ImA,  ImA, @
2ReA; a,*+ 8, —2ImA; —y2+Va,
|
and&=(uy,u,,w;,W,)". This mode is given by the gradient (€0, EDVV=01(P, &), (9
of the cavity soliton§0=ﬁ,(ReAl,ReAz,ImAl,lmAz)T and
Eq. (7) has been derived by substituting the ansatz which explicitly shows proportionality of to v. Here &}, is

(9 the translational mode of the adjoint operatbf£)=0, and
(-,-) defines scalar product. It is clear now that the effective
into Egs.(1) and assuming<1, u; ,w;~eM external force in Eq(6) is proportional not only to losses
- 1 ] 1 J . . . . . .
For zero losses, our system becomes Hamiltonian and tHt: unlike the effective friction, to, also. Fig. $a) shows

soliton’s position obeys Newton’s equation for a free par-"umerically calculated dependence\bs vy, indistinguish-
ticle, &tzzo=0. This explicitly shows that the translational able on the scale depicted from the results obtained from Eq.

Ea _ 9), ly,V/v,=0.645 and 0.475 for th t
mode &, is now doubly degenerate and that velocity of the( ), namely,V/v, al orthe parame’er cases

oS¢ . . L ~(1) and (2), respectively. Surprisingly, even far;~1 the
;ohton is an arbitrary param.eter determined by initial Cond"l(in)ear de(p)ender?ce pregicted Ey Eﬁ)?ig preservgg to within
tions. Note that the Iosses mtrodupe not only dampiihg a few percent. Dependence ¥fv, on the pump parameter
term proport|o-nal 1072y in EQ. (Q] into the soliton dynam- 4, Fig. 3(b) shows thal/ varies only slightly withu over the
IcS as one might expec.t, making, <0, buF also extgrnal stable part of the branch, with the variation being the greatest
forcing (the termA proportional t&/). Numerical analysis of oa¢ the ends of thg interval. Furthermore, numerical cal-
the spectrum ofZ has shown that the region of stability of cylations over a range of other parameter values have indi-
the walking solitons is approximately inherited from the qui- cated thatv never exceeds,. Equation(9) starts to give
escent_ cqsélZ]. Thls region of stability is as indicated by poor results When{éo,ég) becomes the order of, which
the solid lines in Fig. Zb), where for these moderately large happens in the Hamiltonian limig, ,~e. In this case one

v values the Hopf bifurcation, present in the Hamiltonian needs to assume,~ €2 and proceed with an asymptotic ex-

lim'ittyrlfz—}l()) at p values todthe left of the right-hand imit - \sion up to second order. In fact, this second-order term
point, has been suppressed. gives nothing other than E¢), and signals that Eq¢3) and

; kTothexpllcnI?( C.?lcflate ILhe— depe;denie \Zlfc;_n Ul’fvée (6) should be considered as having second order of smallness
axe the new imit of smalb, =€ and seek sofution of £4S. 3, ¢ Note that finding explicit expressions for the effective

(1) in the for.m(8), Wher?T:Z_EO(t) aqdﬁtzojf' we f|[1d massM’ and friction \,, is more cumbersome using this
that to the first ordere(Lo—d;)§=d1zoéo—v1 P, WhereLo  asymptotic approach, compared to our previous momentum-

=Z:(v1=v=0) and P= d,(ReE;,IME,,0,0)". V is found based method. Nevertheless, the two methods give the same
from the final answer.

Ej:Aj(T)+E[uj(Tlt)+in(T’t)]
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The question of velocity selection can also be approached 30 )
from a more intuitive, symmetry-based point of view. Upon 20 ;
: . - : 100
taking small perturbations of the trivial zero solution of Egs. ¢ 0
(2) proportional toe“”, one can show that the eigenvalues -10=
o are roots of the characteristic polynomig(w) -gg '

=[(10* + &)+ (11— Vo + y1)° = w?][(ap0® + 8,)°
+(v,—Vw)?]. Inside the region of the soliton existenge
has four roots whose real parts are positive and four roots

0 20 40 60 80 100
t

with negative real parts. Generically therefore, in order for 30¢ : 3
the four-dimensional stable and unstable manifolds to inter- 20+ (b -
sect along a homoclinic orbftcorresponding to a solitary- 10 ]
. v 0
wave solution to Egs(1)] one needs to tune one of the pa- 10
rameters, e.g., velocity, to a particular value, while holding 200
the other parameters fixed. Thus walking cavity solitons are -30¢
a codimension-ong@henomenon in the parameter space of 0 20 40 60 80 100
Egs.(2). t
There are, however, two special limits in which the soli-  Fig. 4. Trajectories of walking cavity solitons after excitation

tons acquire special symmetries and, as a consequence f jocalized initial conditionsE; ,=a, ,exp(-ZwP+ia; 2). (a)
this, a lower codimension. The first is i ,=0. Then Egs. a;1,=0, (b) a;,=—0.2. Other parameters;=0.2, y;,=0, u

(2) become invariant with respect to reversibility transforma-=0.5, 5, ,= —2, a;=10, anda,=1.
tion
conditions, see Fig. 5. This is in full agreement with the
Ri:(m,ReA;,ImA;,ReA,,ImA,) above analytical considerations.
Let us also remark briefly on previous studies involving
—(—7,—ReA;,ImA;,ReA;,—ImA;y), (100  velocity selection. In reaction-diffusion systems arising in
biology and chemistry, the notion of the selection of the
and we find that a family oR;-symmetricsolitons exist fora speed of a front or pulse is widespread; in, e.g., the
continuousV-interval, i.e., havecodimension zeroThis is  FitzHugh-Nagumo equations for nerve impul$2s], or the
because, intersection of the stable and unstable manifold¥nlinear Schrdinger equation with third-order dispersion
now automatically takes place if trajectories leaving zeroand dissipative correctiorj22]. Note, that in the latter work
along the four-dimensional unstable manifold intersect thetn approach based on energy and momentum balance similar
four-dimensional symmetry hyperplane fi() at a point A to the one described above was used to find the selected
second limit is the case of quiescent solitons=V=0, Value of the soliton velocity. In the context of quadratic non-
when Egs.(2) are invariant under a different reversibility, linearity, dissipative shock waves, and solitons in the pres-
Ry (7,AL,A)—(—7,ALLA,). Then R,-symmetric  ence of walk-off have recently been modeled using so-called
codimension-zero solitons exist throughout a finite range ofiuadratic Ginzburg-Landa@GL) equation$23,24. Walking
parameter§12]. Thus both of the asymptotic methods ap- domain walls in optical parametric oscillators above thresh-
plied above are valid in the limits when either of the sym-old have been reported [25] using a reduction of Eqs1)
metriesRl or R2 are Weak|y broken. Therefore, it would be toareal GL equation. Also, queStionS of pattern formation in
correct to interpret velocity selection as being due to th¢he presence of walk off have attracted much attention re-
breaking of reversibility. For a review of properties of the cently, see, e.g[13,26].
homoclinic orbits in reversible systems see, d.20).

Finally we verify the velocity selection mechanism and gg (@)
the stability of the walking solitons by presenting the results 10- L —
of numerical simulation of Eqg1). First we consider exci- Qe T
tation of a solitary structure in the presence of the walk-off -10
and with zero losses. If localized initial conditions are even :?3:
fL.m.ctions ofz i.e., th(_a initial moment_urr_] is zero, then, pro- 0 20 40 60 80 100
viding that walk-off is nonzero, emission of linear waves !
during the relaxation to the solitary wave has an asymmetric
character and therefore the emerging soliton acquires non- 30 3
zero velocity, see Fig. (4). Walk-off-induced momentum 20 () 3
transfer from linear waves to solitons can be compensated by . 13 e ———
imposing asymmetric transverse variations of the phase of _10 j
the initial conditions. Thus, the soliton velocity is a tunable -20 ]
parameter and can be reduced, e.g., to zero, see (Big.l4 -30 2

0 20 40 60 80 100

contrast, when we take into account losses, then, the simula- .

tions clearly show that the soliton’s velocity becomes inde-
pendent of the value of the momentum stored in the initial FIG. 5. The same as Fig. 4, byt ,=0.05.
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In summary, we have established the existence of twoef the breaking of reversibility by the inclusion of walk off
component cavity solitons in the degenerate OPO with walkand losses. We finally remark that we have also obtained
off and have revealed the phenomenon of velocity selectionesults similar to the above for nondegenerate OPOs, where
Moreover, we have provided asymptotic methods for prenot only velocity, but also frequency shift is selec{@],
dicting the selected velocity of dissipative solitons, for whichand for the case of two-dimensional spatial solitons.
we get excellent numerical agreement. These methods, valid
in the limits of small losses or walk-off, can be generalized We thank W.J. Firth for useful discussions. DVS ac-
to other multicomponent optical systems. Moreover, we havénowledges support from the Royal Society of Edinburgh
shown how the asymptotic results can be interpreted in termand the EPSRC Grant No. GR/N19830.
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